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Theory Applications Summary

Copula Theory

Definition (Copula)

a Given N random variables X = (X1, . . . ,XN) ∈ RN . Let
{ui = Fi (xi ), i = 1, . . . ,N} be the marginal distribution functions of X. A
N-dimensional copula C : IN → I(I = [0, 1]) of X is a function with
following properties:

1 C is grounded and N-increasing;

2 C (1, . . . , 1, ui , 1, . . . , 1) = ui .

aRoger B Nelsen. An introduction to copulas. Springer, 2007.

the theory on representation of statistical dependence in probability

copula function contains all the dependence information between
random variables

a probability function on unit cubic
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Copula Theory

Theorem (Sklar’s Theorem)

a Given a random vector X = (X1, . . . ,XN), its CDF F(x) can be
represented as

F(x) = C (u1, . . . , uN), (1)

where C is a copula function, {ui} are marginal distribution functions of
X. If {Fi} are continuous, then C is unique.

aM. Sklar. “Fonctions de repartition an dimensions et leurs marges”. In: Publ. Inst. Statist. Univ. Paris 8 (1959), pp. 229–231.

the core of copula theory

there exists a copula function for each multivariate probability
function
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Copula Theory

Corollary

The probabilistic density function (PDF) p(x) of X can be represented as

p(x) = c(u)
N∏
i=1

pi (xi ), (2)

where {pi , i = 1, . . . ,N} are marginal density functions of X, and c is
copula density.

seperating dependence representation with properties of individual
variables

5 / 62



Theory Applications Summary

Copula Entropy: Theory

Definition (Copula Entropy)

Let X be random variables with marginals u and copula density c(u). Copula
Entropy of X is defined as

Hc(x) = −
∫

u

c(u) log c(u)du. (3)

a special type of Shannon entropy

an ideal measure of statistical independence

distribution-free
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Copula Entropy: Theory

Theorem

Mutual Information of X is equavalent to its negative copula entropy.

I (x) = −Hc(x). (4)

Corollary

H(x) =
∑
i

Hi (xi ) + Hc(x). (5)

the bridge between copula theory and information theory1

1Jian Ma and Zengqi Sun. “Mutual information is copula entropy”. In: Tsinghua Science & Technology 16.1 (2011). See also arXiv
preprint arXiv:0808.0845 (2008), pp. 51–54.
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Copula Entropy: Theory

Axiomatic Properties of Copula Entropy

multivariate
symmetric
non-negative, 0 iff independence
invariant to monotonic transformation
equivalent to correlation coefficient in Gaussian cases

An ideal measure compared with others

Table: Comparison with other independence measures.

Copula Entropy Distance Correlation HSIC

Definition copula based generalised corr corr in RKHS
Multivariate Yes distance multivariance dHSIC
Invariance monotonic trans No No
Gaussanity equivalent to cc unclear unclear
Computation low high high
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Copula Entropy: Estimation

Non-Parametric Estimation Method2

1 estimating empirical copula density with rank statistics
2 estimating copula entropy with kNN entropy estimation method

Advantages

distribution-free, non-parametric
tuning-free, insensitive to parameters
good convergence
easy to implement
low computation burden

2Jian Ma and Zengqi Sun. “Mutual information is copula entropy”. In: Tsinghua Science & Technology 16.1 (2011). See also arXiv
preprint arXiv:0808.0845 (2008), pp. 51–54.
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Copula Entropy: Application I

Association Discovery3

3Jian Ma. “Discovering Association with Copula Entropy”. In: arXiv preprint arXiv:1907.12268 (2019).
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Copula Entropy: Association Discovery

Problem

To discover association relationship between random variables from
data

History

An old and fundamental problem since statistics birth

Related Methods

Pearson Correlation Coefficient
Regression
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Copula Entropy: Association Discovery

Traditional association measures
Pearson Correlation Coefficient

rXY = corr(X ,Y ) =
cov(X ,Y )

δX δY
(6)

Spearman’s ρ and Kendall’s τ

ρXY = 12

∫
u

∫
v

C(u, v)dudv − 3 (7)

τXY = 4

∫
u

∫
v

C(u, v)dC(u, v)− 1 (8)

Why Copula Entropy?

Table: Theoretical comparison between CE and CC.

CC CE

linearity linear nonlinear
Order 2 ≥ 2
Assumption Gaussian None
variate bivariate multivariate
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Copula Entropy: Association Discovery

Experiments on the NHANES data

Objectives of NHANES

to monitor trends and emerging issues of population health
to investigate its relationship with risk factors, nutritions and
environmental exposures, etc.

NHANES (2013-2014)

14,332 persons from 30 different survey locations were selected;
Of those selected, 10,175 interviewed and 9,813 examined;
5 groups of data: demographics, dietary, examination, laboratory,
and questionnaire.

Experimental data
The laboratory data, which includes 423 variables from blood, urine, oral

rinse and vaginal/Penile swabs.

Missing values
The missing values were filled with the mean of their corresponding

variables.
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Copula Entropy: Association Discovery

Results - Correlation matrices
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Copula Entropy: Association Discovery

Results - Variable groups with meanings

Table: Variable groups with biomedical meanings discovered with CE.

Group Index Variables

1
288-302 Polycyclic Aromatic Hydrocarbones (PAH) - Urine

68-75 Copper, Selenium & Zinc - Serum
395-420 Urine Metals

2
358-373 Blood Lead, cadmium, total Mercury, Selenium, and Manganese
269-276 Blood mercury: inorganic, ethyl and methyl

3
277-287 Oral Glucose Tolerance Test
258-262 Insulin

7-9

Cholesterol-LDL, Triglyceride&Apoliprotein(ApoB),
WTSAF2YR-Fasting Subsample 2 Year MEC Weight,

LBXAPB-Apolipoprotein (B) (mg/dL),
LBDAPBSI-Apolipoprotein (B) (g/L)

4
10-46 Standard Biochemistry Profile

137-176 Human Papillomavirus (HPV) - Oral Rinse

5
76-101 Personal Care and Consumer Product chemicals and Metabolites

327-353 Phthalates and Plasticizers Metabolites - Urines
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Copula Entropy: Application II

Structure Learning4

4Jian Ma and Zengqi Sun. “Dependence structure estimation via copula”. In: arXiv preprint arXiv:0804.4451 (2008).
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Copula Entropy: Structure Learning

Problem

To learn statistical structure among random variables from data

Graph Representation

A probability density is represented with a directed or indirected
graph, of which each node represents a random variable, and each
edge represents a (conditional) dependence relation between two
random variables

Related Methods

Chow-Liu Algorithm
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Copula Entropy: Structure Learning

Our Algorithm
1 computing dependence matrix Wx of data x with CE estimation
2 constructing dependence structure T from Wx with MST algorithm

Advantages

distribution-free, non-parametric
tuning-free, insensitive to parameters
easy to implement
low computation burden
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Copula Entropy: Structure Learning

Simulated Experiment
5 random variables: the first three are Gaussian and the others two are

governed by Gaussian copula with margins as normal distribution and

exponential distribution respectively
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Copula Entropy: Structure Learning

Experiment on real data

Abalone data
Predicting the age of abalone from

physical measurements
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Copula Entropy: Application III

Variable Selection5

5Jian Ma. “Variable Selection with Copula Entropy”. In: Chinese Journal of Applied Probability and Statistics 37.4 (2021),
pp. 405–420.
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Copula Entropy: Variable Selection

Problem

To select a ’right’ subset of variables from the whole group for
building classification or regression models with good predictability
and interpretability

History

An old and basic problem in statistics and machine learning

Related Problems

Feature Selection
Model Selection
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Copula Entropy: Variable Selection

Existing methods - Likelihood with penalty

Information Criteria
with penalty on the number of parameters in the models

AIC = −2L + 2p (9)

BIC = −2L + p logN (10)

Penalized GLMs
with penalty on the nonzero coefficients in the GLMs

LASSO
Ridge Regression
Elastic Net

min
β
{L(β; y ,X) + λ1||β||1 + λ2||β||22} (11)

Adaptive LASSO

min
β
{L(β; y ,X) + λ

p∑
j=1

wj |βj |} (12)
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Copula Entropy: Variable Selection

Existing methods - Statistical independence measures

Distance Correlation

dCor(X ,Y ) =
ν2(X ,Y )√
ν2(X )ν2(Y )

, (13)

where ν2(X ,Y ) be distance covariance.

Hilbert-Schmidt Independence Criterion (HSIC)

dHSIC(P(X)) = ||Π(P(X1)⊗, . . . ,⊗P(Xd))− Π(P(X))||, (14)

where Π be the mean embedding function associated with kernel
functions.
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Copula Entropy: Variable Selection

CE based method
To select variables based on ranks of their negative CE values with target

Advantages

model-free, non-parametric
tunning-free, insensitive to parameters
interpretable with physical meanings
supported by rigorous math
science instead of art, compared with existing methods
easy to implement, low computation burden
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Copula Entropy: Variable Selection

Experiments on the UCI heart disease data6

Overview of the data
The data set contains 4 databases (899 samples) concerning heart disease
diagnosis. All attributes are numeric-valued. The data was collected from
the four following locations:

Cleveland clinic foundation;
Hungarian Institute of Cardiology, Budapest;
V.A. medical center, long beach, CA;
University hospital, Zurich, Switzerland.

Attributes
The data has 76 attributes (#58 ‘num’ for diagnosis). Of them, 13

attributes are recommended by professionals as clinical relevant.

Table: Recommended attributes.

ID 3 4 9 10 12 16 19
Name age sex cp trestbps chol fbs restecg

ID 32 38 40 41 44 51 58
Name thalach exang oldpeak slope ca thal num

6Arthur Asuncion and David Newman. UCI machine learning repository. 2007.
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Copula Entropy: Variable Selection

Results - Coefficients of penalized likelihood based models
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Copula Entropy: Variable Selection

Results - with statistical dependence measures (dCor, dHSIC, CE)
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Copula Entropy: Variable Selection

Results - Prediction accuracy
the selected variables present the best prediction accuracy.

Model Accuracy(%)

SVM(Recommended variables) 84.20
SVM(CE) 84.76
SVM(dCor) 82.76
SVM(dHSIC) 84.54
Stepwise GLM(AIC) 51.8
Stepwise GLM(BIC) 49.1
LASSO 79.2
Ridge Regression 63.0
Elastic Net 75.9
Adaptive LASSO 35.7
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Copula Entropy: Variable Selection

Results - Selected variables
Copula Entropy selects more ’right’ variables than the other methods do.

Method Selected Variables’ ID X

Recommended variables 3,4,9,10,12,16,19,32,38,40,41,44,51 13
CE 3,4,6,7,9,12,16,28-32,38,40,41,44,51,59-68 11
dHSIC 3,4,6,7,9,12,13,16,25,29-32,38,40,41,44,59-68 10
dCor 3,4,6,7,9,12,13,16,28-33,38,40,41,52,59-68 9
Stepwise GLM(AIC) 3,4,5,9,12,16,18,20,26,29,30,32,40,44,47,50,53,54,60,61,63,65-67 8
Stepwise GLM(BIC) 3,4,5,9,16,18,29,30,40,53,63,66,67 5
Adaptive LASSO 4,6,9,18,32,40,63,67 4
LASSO

all except 8,45 -Ridge Regression
Elastic Net
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Copula Entropy: Application IV

Causal Discovery7

7Jian Ma. “Estimating Transfer Entropy via Copula Entropy”. In: arXiv preprint arXiv:1910.04375 (2019).
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Copula Entropy: Causal Discovery

Problem

To infer causality from time series data by estimating Transfer
Entropy

History & Significance

Causality is one of the oldest topics in philosophy.
Causal discovery is a central problem of all sciences.

Correlation vs Causality

Correlation does not mean causation.
Correlation is only helpful for prediction while causality means
intervention and control.
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Copula Entropy: Causal Discovery

Causality measures

Wiener’s Principle
Cause should improve the prediction of effect.

Granger Causality
improvement measured by the variance of prediction error

δ2(Yt+1|Yt ,Xt) < δ2(Yt+1|Yt) (15)

Transfer Entropy
improvement on the uncertainty of prediction measured by Shannon

entropy

TE =
∑

p(Yt+1,Y
t ,Xt) log

p(Yt+1|Y t ,Xt)

p(Yt+1|Y t)
(16)

= H(Yt+1|Y t)− H(Yt+1|Y t ,Xt) (17)

= I (Yt+1,Xt |Y t) (18)

Issue on TE
difficult to estimate, some think impossible without model assumptions
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Copula Entropy: Causal Discovery

TE via CE

Proposition

Transfer Entropy can be represented with only Copula Entropy.

Tx→y = −Hc(Yt+1,Y
t ,Xt) +Hc(Yt+1,Y

t) +Hc(Y t ,Xt)−Hc(Y t) (19)

Non-parametric Estimator of TE
1 estimating three or four CE terms in (19);
2 calculating TE for these estimated CEs.

inheriting all the merits of non-parametric CE estimation
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Copula Entropy: Causal Discovery

Experiments on the UCI Beijing PM2.5 data8

Overview of the data

Time
hourly data from 2010-01-01 to 2014-12-31, which results in 43824

samples with missing values.
Observations

PM2.5 data of US Embassy in Beijing
Meteorological data from Beijing Capital International Airport

Meteorological factors
dew point, temperature, pressure, cumulated wind speed, combined wind

direction, cumulated hours of snow, cumulated hours of rain.

Experimental data

the first four factors used in the experiments;
1000 samples without missing values (2010-04-02∼2010-05-14).

8Arthur Asuncion and David Newman. UCI machine learning repository. 2007.
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Copula Entropy: Causal Discovery

Results: Effects of meteorological factors on PM2.5
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Interpretation

The effects do not show
immediately and are
cumulating processes.
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Copula Entropy: Causal Discovery

Results - Effects between meteorological factors
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Copula Entropy: Application V

Time Lag Estimation9

9Jian Ma. “Identifying Time Lag in Dynamical Systems with Copula Entropy based Transfer Entropy”. In: arXiv preprint
arXiv:2301.06037 (2023).
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Copula Entropy: Time Lag Estimation

Problem

To identify time lag in dynamical systems with copula entropy based
transfer entropy

Significance

Time lag is ubiquitous in physical, social, and biological systems.
Identifying time lag is of fundamental importance in applications of
dynamical systems.

Related Methods

Auto-correlation
Time-delayed mutual information
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Copula Entropy: Time Lag Estimation

Our method
1 estimating transfer entropies on time lag horizon from data with the

CE-based estimator
2 identifying the time lag associated with the maximum TE value
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Copula Entropy: Time Lag Estimation

Simulations
1 generate trajectories from four simulated dynamical system with

respect to different state or ouput lags
2 identify the time lag with our method

Simulated systems

a system driven by random walk with output lag
a system driven by sine function with output lag
Wiener process with output lag
a first-order linear system with state lag
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Copula Entropy: Time Lag Estimation

Simulated trajectories
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Copula Entropy: Time Lag Estimation

Simulation: Results
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Copula Entropy: Time Lag Estimation

Power consumption of the Tetouan city10

Data

power consumption of 3
networks in 2017
weather factors,
including temperature,
humidity, wind speed,
general diffuse flows,
diffuse flows

Power consumption forecast

To identify time lags
from weather to power
consumption
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10Arthur Asuncion and David Newman. UCI machine learning repository. 2007.
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Copula Entropy: Application VI

System Identification11

11Jian Ma. “System Identification with Copula Entropy”. In: arXiv preprint arXiv:2304.12922 (2023).
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Copula Entropy: System Identification

Problem

To discover differential equation from time series data

Significance

differential equations are the main mathematical tools for modelling
dynamical systems.
discovering differential equations of dynamical systems has wide
applications in many scientific fields.

Related Methods

SINDy
Gaussian processes
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Copula Entropy: System Identification

Idea
considering system identification as a variable selection problem

dxi
dt

= f (x, t). (20)

Our method
1 calculating the derivative of system variables with differential

operator;
2 estimating the CEs between the calculated derivatives and the

covariates of the system;
3 selecting the covariates with high CE value for each derivatives.
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Copula Entropy: System Identification

Simulations
1 simulating time series data from the 3D Lorenz system
2 identifying the system equation from data with our method

Results

Figure: 3D plot of the simulated data.
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Figure: Identification results.
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Copula Entropy: Application VII

Multivariate Normality Test12

12Jian Ma. “Multivariate Normality Test with Copula Entropy”. In: arXiv preprint arXiv:2206.05956 (2022).
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Copula Entropy: Multivariate Normality Test

Problem

To test the hypothesis that the distribution of data is normal
distribution

Significance

Normal distribution is the most important distribution in probability
theory;
Normality is a common assumption of many statistical tools;
Testing normality is widely needed in real applications.

Related Methods

characteristics function based
moments based
skewness and kurtosis
energy distance based
entropy based
Wasserstein distance based
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Copula Entropy: Multivariate Normality Test

The proposed statistic

Tce = Hc(x)− Hc(xn), (21)

where xn is the Gaussian random vector with the same covariances
as x.

defined as the difference of copula entropies
Tce = 0 if normal distributions

The estimator

the first term in (21) can be estimated with the non-parametric CE
estimator;
the second term in (21) can be estimated easily by first estimating
the covariances Vx of x and then calculating the result according to
(22).

Hc(xn) =
1

2
log |Vx |. (22)
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Copula Entropy: Multivariate Normality Test

Simulation Experiments

Data

bivariate normal copula with normal and exponential marginals
bivariate Gumbel copula with normal marginals

Compared methods

Mardia’s
Royston’s
Henze and Zirkler’s
Doornik and Hansen’s, and
the energy distance based test by Rizzo and Székely
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Copula Entropy: Multivariate Normality Test

Simulation Results

Bivariate normal copula
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Bivariate Gumbel copula

2 4 6 8 10

−
1.

42
−

1.
40

−
1.

38
−

1.
36

−
1.

34
−

1.
32

CE

alpha

st
at

is
tic

2 4 6 8 10

0
20

40
60

80
10

0
12

0
14

0

Mardia

alpha

st
at

is
tic

2 4 6 8 10

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

Royston

alpha
st

at
is

tic

2 4 6 8 10

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

2.
2

Henze−Zirkler

alpha

st
at

is
tic

2 4 6 8 10

20
40

60
80

Dornik−Haansen

alpha

st
at

is
tic

2 4 6 8 10

1
2

3
4

5

Energy Distance

alpha
st

at
is

tic

53 / 62



Theory Applications Summary

Copula Entropy: Application VIII

Two-Sample Test13

13Jian Ma. “Two-Sample Test with Copula Entropy”. In: arXiv preprint arXiv:2307.07247 (2023).
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Copula Entropy: Two-Sample Test

Problem

To test the hypothesis that two samples are from a same distribution

Significance

a basic hypothesis testing problem;
Symmetry test and change point detection can be formulated as
two-sample test problem;
has many real applications in many areas, such as politics, medicine,
etc.

Related Methods

T-test or F-test
Kernel-based two-sample test
Kolmogorov-Smirnov test
Mutual information based test
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Copula Entropy: Two-Sample Test

The proposed statistic

Tce = Hc(X,Y0)− Hc(X,Y1), (23)

where X = (X1,X2) is for two samples X1 = {X11, · · · ,X1m} and
X2 = {X21, · · · ,X2n}, and Y1 = (01, · · · , 0m, 11, · · · , 1n) and
Y0 = (11, · · · , 1m+n) are the labels for the null and the alternative
hypothesis.

non-parametric multivariate two-sample test
defined as the difference between the copula entropies of the null and
the alternative hypothesis;
Tce is small if H0 is true.

The estimator

estimating the two terms in (23);
calculating the estimated statistic.
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Copula Entropy: Two-Sample Test

Simulation Experiments

Data

bivariate normal distribution with different means
bivariate normal distribution with different variances
bivariate Gaussian copula with normal and exponential marginals

Compared methods

Kernel-based test
Energy distance-based test
Mutual information-based test
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Copula Entropy: Two-Sample Test

Simulation Results

Bivariate normal
distribution with
different means
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Bivariate normal
distribution with
different variances
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different variances
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Summary

The theory of Copula Entropy was developed from copula theory,
and a non-parametric method for estimating CE was proposed.

CE was proposed to test statistical independence and conditional
independence (transfer entropy).

CE was applied to solve 8 fundamental statistical problems,
including association discovery, structure learning, variable selection,
causal discovery, time lag estimation, system identification,
multivariate normality test, and two-sample test.
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Softwares

Official
The copent14 package in R and Python for estimating copula entropy,
transfer entropy, and the statistic for multivaritate normality test are
available on CRAN and PyPI respectively. The source codes are provided
on GitHub.

https://cran.r-project.org/package=copent

https://pypi.org/project/copent/

https://github.com/majianthu

Third-Party
The third-party implementations of the CE estimator include the cylcop
package in R, the MLFinLab package in Python, the CopEnt.jl package
and the CausalityTools.jl package in Julia, and the gcmi package in
Matlab and Python.

14Jian Ma. “copent: Estimating Copula Entropy and Transfer Entropy in R”. In: arXiv preprint arXiv:2005.14025 (2020).
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My Golf

Enjoy the Power of Copula Entropy!
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