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Introduction

Introduction

Statistical independence and conditional independence are two fundamental
conceptes in statistics and machine learning with many applications in
different areas.

Copula Entropy (CE) is a mathematical concept for multivariate statistical
independence testing with several good properties, and can be estimated
nonparametrically.

Transfer Entropy (TE), a tool for measuring causality, can be representation
with only CE, and therefore can also be estimated nonparametrically via CE.

The copent package in R implements the above methods for estimating CE
and TE.

This talk introduces the implementation of the package and compares it with
the other related methods implemented in R on (conditional) independence
testing with two real-world data examples.
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Theory and Estimation Copula Theory

Copula Theory

Theorem (Sklar’s Theorem)

a Given a random vector X = (X1, . . . ,XN), its PDF p(x) can be represented as

p(x) = c(u)
N∏
i=1

pi (xi ), (1)

where u = {ui} are marginal distribution functions of X, {pi , i = 1, . . . ,N} are
marginal density functions of X, and c is copula density.

aM. Sklar. “Fonctions de repartition an dimensions et leurs marges”. In: Publ. Inst. Statist. Univ. Paris 8 (1959), pp. 229–231.

the core of copula theory

seperating dependence representation from properties of individual variables
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Theory and Estimation Theory of Copula Entropy

Definition and Theorem

Definition (Copula Entropy)

Let X be random variables with marginals u and copula density c(u). CE of X is
defined as

Hc(x) = −
∫
u

c(u) log c(u)du. (2)

Theorem

Mutual Information of X is equivalent to its negative CE.

I (x) = −Hc(x). (3)

the theory of statistical independence measure

the bridge between copula theory and information theory1

1Jian Ma and Zengqi Sun. “Mutual information is copula entropy”. In: Tsinghua Science & Technology 16.1 (2011). See also arXiv preprint
arXiv:0808.0845 (2008), pp. 51–54.

5 / 27



Theory and Estimation Theory of Copula Entropy

Properties and Comparison

Axiomatic properties of CE

multivariate
symmetric
non-negative, 0 iff independence
invariant to monotonic transformation
equivalent to correlation coefficient in Gaussian cases

An ideal measure compared with others

Table: Comparison with other independence measures.

CE Distance Correlation HSIC

Definition copula based generalised corr corr in RKHS
Multivariate Yes distance multivariance dHSIC
Invariance monotonic trans No No
Gaussanity equivalent to cc unclear unclear
Computation low high high
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Theory and Estimation Estimating Copula Entropy and Transfer Entropy

Estimating CE

Non-Parametric Estimation Method2

1 estimating empirical copula density with rank statistic
2 estimating CE with the KSG entropy estimation method

Advantages

distribution-free, non-parametric
tuning-free, insensitive to parameters
good convergence
easy to implement
low computation burden

2Jian Ma and Zengqi Sun. “Mutual information is copula entropy”. In: Tsinghua Science & Technology 16.1 (2011). See also arXiv preprint
arXiv:0808.0845 (2008), pp. 51–54.
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Theory and Estimation Estimating Copula Entropy and Transfer Entropy

Estimating Transfer Entropy via CE

Definition (Transfer Entropy)
a Let xt , yt be two time series observations at time t = 1, . . . ,N of the processes
Xt ,Yt . TE TY→X from Y to X is defined as

TY→X =
∑

p(xt+1, xt , yt) log
p(xt+1|xt , yt)
p(xt+1|xt))

. (4)

aThomas Schreiber. “Measuring information transfer”. In: Physical Review Letters 85.2 (2000), p. 461.

1 CE representation of TE
Ma3 proved that TE can be represented with only CE as follows:

TY→X = −Hc(xt+1, xt , yt) + Hc(xt+1, xt) + Hc(yt , xt). (5)

2 Nonparametric estimation of TE via CE
1 Estimating three CE terms in (5);
2 Calculating TE with the estimated CE terms.

3Jian Ma. “Estimating Transfer Entropy via Copula Entropy”. In: arXiv preprint arXiv:1910.04375 (2019).
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Implementation Overview

The copent Package: Overview

The copent package for estimating CE was developed during the author’s PhD
study at Tsinghua University, and first released on the CRAN on April 16, 2020.
Currently, it implements the methods for estimating CE and TE.

latest version: 0.2

including 5 functions

Table: The functions in the package.

Function Description

construct empirical copula(x)
constructing empirical copula function from data x

based on rank statistic
entknn(x,k,dt) estimating entropy from data x with the KSG method

copent(x,k,dt)
main function for estimating CE by calling the above
two functions

ci(x,y,z,k,dt)
testing conditional independence between (x,y)

conditioned on z

transent(x,y,lag,k,dt) estimating TE from y to x with time lag lag

Note: k,dt are the arguments for k th nearest neighbour and distance type of the KSG algo-
rithm respectively.
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Implementation Functions

Functions for Estimating CE

1 construct empirical copula

This function estimates copula density from data with rank statistic.

1 c o n s t r u c t e m p i r i c a l c o p u l a ( x )

2 entknn

This function implements the KSG method for estimating entropy.

1 entknn ( x , k=3, dt =2)

3 copent

main function which implements the nonparametric method for estimating
CE. It returns negative CE for convenience.

1 copent<−f u n c t i o n ( x , k=3, dt =2){
2 xc = c o n s t r u c t e m p i r i c a l c o p u l a ( x )
3 −entknn ( xc , k , dt )
4 }
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Implementation Functions

Function for Conditional Independence Testing

1 ci
This function implements the method for testing conditional independence
between (x,y) conditioned on z by calling the function copent three times
according to (5).

1 c i<−f u n c t i o n ( x , y , z , k=3, dt =2){
2 xyz = c b i n d ( x , y , z )
3 xz = c b i n d ( x , z )
4 yz = c b i n d ( y , z )
5 copent ( xyz , k , dt ) − copent ( xz , k , dt ) − copent ( yz , k , dt )
6 }
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Implementation Functions

Function for Estimating TE

1 transent
This function implements the method for estimating TE from y to x with
time lag lag by simply calling the function ci after preparing the data
according to lag.

1 t r a n s e n t<−f u n c t i o n ( x , y , l a g =1,k=3, dt =2){
2 l = l e n g t h ( x )
3 x1 = x [ 1 : ( l−l a g ) ]
4 x2 = x [ ( l a g +1) : l ]
5 y1 = y [ 1 : ( l−l a g ) ]
6 c i ( x2 , y1 , x1 , k , dt )
7 }
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Examples Variable Selection

Example I

Variable Selection45

4Jian Ma. “Variable Selection with Copula Entropy”. In: Chinese Journal of Applied Probability and Statistics (accepted). See also arXiv preprint
arXiv:1910.12389 (2019).

5The code for this example is available at https://github.com/majianthu/aps2020.
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Examples Variable Selection

Variable Selection with CE

CE based method
To select variables based on ranks of their negative CE values with target

Other related measures in R

Hilbert-Schmidt Independence Criterion (HSIC): dHSIC
Distance Correlation: energy

Heller-Heller-Gorfine Tests of Independence: HHG

Hoeffing’s D Test: independence

Bergsma-Dassios T* sign covariance: independence

Ball Correlation: Ball

1 l i b r a r y ( copent ) # Copula Entropy
2 l i b r a r y ( e n e r g y ) # D i s t a n c e C o r r e l a t i o n
3 l i b r a r y ( dHSIC ) # H i l b e r t−Schmidt I n d e p e n d e n c e C r i t e r i o n
4 l i b r a r y (HHG) # H e l l e r−H e l l e r−G o r f i n e T e s t s o f I n d e p e n d e n c e
5 l i b r a r y ( i n d e p e n d e n c e ) # H o e f f d i n g ’ s D t e s t o r Bergsma−

D a s s i o s T∗ s i g n c o v a r i a n c e
6 l i b r a r y ( B a l l ) # B a l l c o r r e l a t i o n
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Examples Variable Selection

UCI Heart Disease Data

The data set contains 4 databases collected from four different locations
worldwide, including 899 samples without missing values. Each sample has 76
attributes concerning heart disease diagnosis (#58 for diagnosis), 13 attributes of
which were recommended by professionals as clinical relevant.

1 scan data <−f u n c t i o n ( f i l e n a m e 1 , n l = 0) {
2 u r l 1 = p a s t e ( ” h t t p : // a r c h i v e . i c s . u c i . edu /ml/ machine−

l e a r n i n g−d a t a b a s e s / h e a r t−d i s e a s e /” , f i l e n a m e 1 , sep=”” )
3 data1 = scan ( u r l 1 , n l i n e s = nl , what = c ( as . l i s t ( r e p

( 0 , 7 5 ) ) , l i s t ( ”” ) ) )
4 l = l e n g t h ( data1 [ [ 1 ] ] )
5 data1m = m a t r i x ( u n l i s t ( data1 ) , l , 76)
6 m a t r i x ( as . numer ic ( data1m [ , 1 : 7 5 ] ) , l , 75)
7 }
8 h1 = scan data ( ” c l e v e l a n d . data ” , 282∗ 10)
9 h2 = scan data ( ” h u n g a r i a n . data ” )

10 h3 = scan data ( ” s w i t z e r l a n d . data ” )
11 h4 = scan data ( ” long−beach−va . data ” )
12 h e a r t 1 = as . m a t r i x ( r b i n d ( h1 , h2 , h3 , h4 ) )
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Examples Variable Selection

Code of the Example

The dependences between #58 attribute (diagnosis) and the other attributes are
estimated with the 6 measures as follows:

1 f o r ( i i n 1 : 7 6 ) {
2 ce58 [ i ] = copent ( h e a r t 1 [ , c ( i , 5 8 ) ] )
3 dcor58 [ i ] = d c o r ( h e a r t 1 [ , i ] , h e a r t 1 [ , 5 8 ] )
4 d h s i c 5 8 [ i ] = d h s i c ( h e a r t 1 [ , i ] , h e a r t 1 [ , 5 8 ] ) $dHSIC
5 Dx = as . m a t r i x ( d i s t ( ( h e a r t 1 [ , i ] ) , d i a g=TRUE, upper=TRUE) )
6 Dy = as . m a t r i x ( d i s t ( ( h e a r t 1 [ , 5 8 ] ) , d i a g=TRUE, upper=TRUE) )
7 hhg58 [ i ] = hhg . t e s t (Dx , Dy , nr . perm = 500)
8 i n d 5 8 [ i ] = h o e f f d i n g .D. t e s t ( h e a r t 1 [ , i ] , h e a r t 1 [ , 5 8 ] ) $Dn
9 b a l l 5 8 [ i ] = b c o r ( h e a r t 1 [ , i ] , h e a r t 1 [ , 5 8 ] )

10 }
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Examples Variable Selection

Selection Results

The figures below show the dependence between #58(diagnosis) and the other
attributes. The red lines are all the dependence between #58 and #16, which are
taken as the selection threshold for each measure.
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(b) dCor
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(c) dHSIC
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(d) HHG
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(e) Hoeffding’s D
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(f) Ball Correlation

Figure: Variables selected with the 6 measures.
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Examples Variable Selection

Interpretability of the Selections

Number of the selected recommended variables
CE selects more recommended variables with biomedical meanings than the other

measures do.

Table: Selected variables with the 6 measures.

Measure Selected Variables’ ID X

CE 3,4,6,7,9,12,16,28-32,38,40,41,44,51,59-68 11
dCor 3,4,6,7,9,12,13,16,28-33,38,40,41,52,59-68 9
dHSIC 3,4,6,7,9,12,13,16,25,29-32,38,40,41,44,59-68 10
HHG 4,6,7,9,16,25,32,38,40,41,52 7
Hoeffding’s D 4,5,8,9,13,16,17,23,26,27,38,39,45-50,52-54 4
Ball 4,6,7,9,13,16,25,32,38,40,41,52 7

Recommendations 3,4,9,10,12,16,19,32,38,40,41,44,51 13
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Examples Causal Discovery

Example II

Causal Discovery67

6Jian Ma. “Estimating Transfer Entropy via Copula Entropy”. In: arXiv preprint arXiv:1910.04375 (2019).

7The code for this example is available at https://github.com/majianthu/transferentropy.
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Examples Causal Discovery

Causal Discovery

Goal
To infer causality from time series data by estimating TE

Other Related Methods in R

Kernel-based Conditional Independence (KCI): CondIndTests
Conditional Distance Correlation (CDC): cdcsis
COnditional DEpendence Coefficient (CODEC): FOCI

1 l i b r a r y ( copent )
2 l i b r a r y ( CondIndTests )
3 l i b r a r y ( c d c s i s )
4 l i b r a r y ( FOCI )
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Examples Causal Discovery

UCI Beijing PM2.5 Data

Overview

Time & Location
hourly data from 2010-01-01 to 2014-12-31, including PM2.5 data of US Embassy in

Beijing and meteorological data from Beijing Capital International Airport

Meteorological factors
dew point, temperature, pressure, cumulated wind speed, combined wind direction,

cumulated hours of snow, cumulated hours of rain.

Experimental data

the ’pressure’ factor used in the example;
501 samples without missing values (2010-04-02∼2010-04-23).

1 u c i d a t a = r e a d . c s v ( ” h t t p s : // a r c h i v e . i c s . u c i . edu /ml/ machine
−l e a r n i n g−d a t a b a s e s / 00381 /PRSA data
2 0 1 0 . 1 . 1 −2 0 1 4 . 1 2 . 3 1 . c s v ” )

2 data = u c i d a t a [ 2 2 0 0 : 2 7 0 0 , c ( 6 , 9 ) ] # 6(PM2. 5 ) , 9 ( P r e s s u r e )
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Examples Causal Discovery

Code of the Example

The causality from pressure to PM2.5 with time lag from 1h to 24h is estimated
with the 4 measures as follows:

1 f o r ( l a g i n 1 : 2 4 ) {
2 pm25a = data [1:(501− l a g ) , 1 ]
3 pm25b = data [ ( l a g +1) : 5 0 1 , 1 ]
4 v1 = data [1:(501− l a g ) , 2 ]
5

6 t e 1 [ l a g ] = t r a n s e n t ( data [ , 1 ] , data [ , 2 ] , l a g )
7 # t e 1 [ l a g ] = c i ( pm25b , v1 , pm25a )
8

9 k c i 1 [ l a g ] = KCI ( pm25b , v1 , pm25a ) $ t e s t S t a t i s t i c
10 cdc1 [ l a g ] = c d c o r ( pm25b , v1 , pm25a )
11 codec1 [ l a g ] = codec ( pm25b , v1 , pm25a )
12 }
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Examples Causal Discovery

Results
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Figure: Estimated causality from pressure to PM2.5 with lags from 1h to 24h.
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Summary

Summary

The theory of CE and the estimation methods of CE and TE are introduced.

copent, the R package for estimating TE and CE, is introduced with
implementation details.

The examples on variable selection and causal discovery demonstrate the
usage of the copent package and compare it with the related R packages.
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Summary
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Summary

Softwares

https://cran.r-project.org/package=copent

https://pypi.org/project/copent

https://github.com/majianthu

The package copent8 in R and Python for estimating copula entropy and transfer entropy
are available on CRAN and PyPI respectively. The source codes are provided on GitHub.

8Jian Ma. “copent: Estimating Copula Entropy and Transfer Entropy in R”. In: arXiv preprint arXiv:2005.14025 (2020).
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Summary

Enjoy the Power of Copula Entropy!
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